Variational Crimes and L 00 Error Estimates in the Finite Element Method
نویسندگان
چکیده
In order to numerically solve a second-order linear elliptic boundary value problem in a bounded domain, using the finite element method, it is often necessary in practice to violate certain assumptions of the standard variational formulation. Two of these "variational crimes" will be emphasized here and it will be shown that optimal L error estimates still hold. The first "crime" occurs when a nonconforming finite element method is employed, so that smoothness requirements are violated at interelement boundaries. The second "crime" occurs when numerical integration is employed, so that the bilinear form is perturbed. In both cases, the "patch test" is crucial to the proof of L°° estimates, just as it was in the case of mean-square estimates.
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملError estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization
We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L norm. We then derive optimal a priori error estimates in the H and L norm for a FEM with variational crimes due to numerical integration. As an application we d...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملEigenvalue and eigenfunction error estimates for finite element formulations of linear hydroelasticity
Convergence of an approximate method for determining vibrational eigenpairs of an elastic solid containing an incompressible fluid is examined. The field variables are solid displacement and fluid pressure. We show that in suitable Sobolev spaces a variational formulation exists whose solution eigenvalues and eigenfunctions are identified with those of a compact operator. A nonconforming finite...
متن کاملSemilinear Mixed Problems on Hilbert Complexes and Their Numerical Approximation
Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010), 281–354] that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article [arXiv:1005.4455], we extended the Arnold–Falk–Winther framework by analyzing variational crimes (a la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010